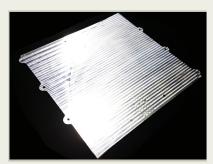
A Next Generation Spacecraft Heat Rejection System, Phase I

Completed Technology Project (2018 - 2019)


Project Introduction

In response to NASA SBIR FY 2018 In response to NASA SBIR FY 2018 topic Z2.01, Thermal Management, ThermAvant Technologies, LLC proposes to develop an innovative, passive heat transfer device that can significantly improve the spacecraft's thermal control system, namely around heat acquisition and rejection capabilities. ThermAvant proposes to develop an advanced Oscillating Heat Pipe (OHP) based heat rejection system that will enable next generation communications and power electronics to be easily integrated into space vehicle systems. ThermAvant's research team will demonstrate the proposed concepts and innovations through design, manufacturing and laboratory testing.topic Z2.01, Thermal Management, ThermAvant Technologies, LLC proposes to develop an innovative, passive heat transfer device that can significantly improve the spacecraft's thermal control system, namely around heat acquisition and rejection capabilities. ThermAvant proposes to develop an advanced Oscillating Heat Pipe (OHP) based heat rejection system that will enable next generation communications and power electronics to be easily integrated into space vehicle systems. ThermAvant's research team will demonstrate the proposed concepts and innovations through design, manufacturing and laboratory testing.

Anticipated Benefits

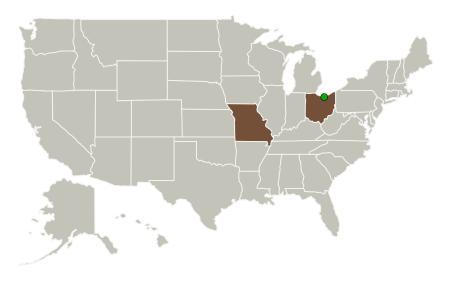
The NASA Technology Roadmap identifies the need for Phase Change Material Storage, under Heat Rejection and Energy Storage. Two specific programs that could benefit from the technology are the DRM 5 Asteroid Redirect and the New Frontiers Program 4, both of which need an enabling energy storage system during portions of missions with cyclic thermal environments. All future NASA missions will likely require the highest efficiency radiators, as the backbone of their thermal control system.

Large-format, high capacity radiators will have applications in terrestrial vehicles with electrical loads, and in large industrial vehicles where the proposed passive solution may be able replace actively pumped single-phase radiators with air cooled systems. These panels may be a viable solution for acquiring heat and rejecting to the heat sink (air, space, water, etc.).

A Next Generation Spacecraft Heat Rejection System, Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3



A Next Generation Spacecraft Heat Rejection System, Phase I

Completed Technology Project (2018 - 2019)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
ThermAvant	Lead	Industry	Columbia,
Technologies, LLC	Organization		Missouri
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations	
Missouri	Ohio

Project Transitions

July 2018: Project Start

February 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140887)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ThermAvant Technologies, LLC

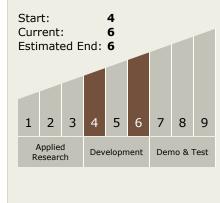
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

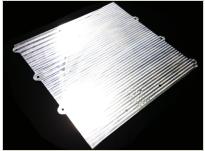
Principal Investigator:

Daniel Pounds

Technology Maturity (TRL)



A Next Generation Spacecraft Heat Rejection System, Phase I



Completed Technology Project (2018 - 2019)

Images

Briefing Chart Image
A Next Generation Spacecraft Heat
Rejection System, Phase I
(https://techport.nasa.gov/imag
e/137273)

Final Summary Chart Image
A Next Generation Spacecraft Heat
Rejection System, Phase I
(https://techport.nasa.gov/imag
e/133866)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.3 Heat
 Rejection and Storage

Target Destinations

Others Inside the Solar System, Foundational Knowledge

